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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDWM 1394

A FLAT WING WITH SHARP EDGES IN A SUPERSONIC STREAM¥

By A. E. Donov

In this work there is given an approximate solution of the problem
of a two-dimensional steady supersonic stream of ideal gas, neglecting
heat conduction, flowing around a tkin wing with sharp edges at small
angles of attack. (Determination of the law of distribution of pressure
along the wing, 1lifting force and head resistance of the wing.)

PART I

The problem of the investigation of the mechanical action of a
moving gas on an immovable wing appears as a special case of the some-
what more general problem of the investigation of the mechanical action
of a moving gas on an immovable fixed wall constraining the motion of
the gas. In our own explanation we begin with the formulation of this
last problem in which we confine ourselves only to the consideration of
the steady two-dimensional forces of ideal gases not subject to the action
of gravitational forces. 1In the plane of motion of the gas we shall
arrange an immovable rectangular coordinate system in such a manner that
it is situated as in figure 1. We introduce three functions v, p, and p
of the independent variables x and y defined, respectively, as the veloc-
ity, density, and pressure. The vector functions ¥ will be determined by
a palr of scalar functions of the independent variables. For these func-
tions we shall agree to take either the functions vy, vy defined as the

projections of the velocity of the axis x and y, respectively, or the
functions v and B, defined, respectively, as the absolute value of the
velocity and its angle with respect to the positive direction of the x-axis,
measured in the counterclockwise sense. In what follows we limit ourselves
to the consideration only of flows for which the function B satisfies the
condition

- g.< g < %‘ (1)

#Izvestiia-Akademia, NAUK, USSR, 1939, pp 603-626.
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As 1is well known, the study of the gas motion under congideration
leads to the investigation of the following system of differential
equations

Ovy vy 1 dp
Vx a—)—(—-'i'vy-a—;—'f;g;—o
vxél,x+vya._‘rl+}.§.2=0
x dy P Ay
> (2)
I(pvy) +B(pvy) o

ox dy

d/p o/ p
V. —) -\ =0

Here k 1is the adiabatic exponent (for air k = 1.405). If the motion
of the gas is constrained by an immovable frictionless fixed wall in the
plane X0Y, the gas will be adjacent to it along some curve. We shall
call this curve the "contour K."

/

-—’
Consider the unit vector t tangent to the contour K directed in
such a manner that its projection on the x-axis is positive. Denote
by Bk the angle which it makes with the x-axis. Clearly p, may be

regarded as a function of the abscissa x of that point of the contour K
associated with the vector t. We denote this function by Bk(x) and
assume that it is continuous. If the function By(x) 1is prescribed and,

moreover, the coordinates of any point of the contour K are given, the
form and position of the contuvur is completely determined. We agree to
take as origin the left edge of the contour K. Then the equation of
this contour will have the form

X
y = fo tan By (x)dx (3)
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We can write this equation more briefly if we designate its right-hand
side by ) (x)

y = yk(x) (&)

Since in the flows under consideration the qg;ection of the velocity on
the contour K must coincide with the vector t, the condition on the flow
along an immovable fixed frictionless wall may be written in the following
fashion

B = Bk(x) (5)

at y = yk(x). The condition (5) must be added to the system of equa-

tions (2) as a qualifying boundary condition. Much work has been dedicated
to the investigation of solutions of the system (2) subject to the con-
dition (5). Of these we are interested here only in those in which the
flow is supersonic, i.e., flows at every point of which the following
condition

v>a (6)

is satisfied, where & is the local speed of sound

-\/ 4
a=1\/k 5 (7)

The investigations contained in these works divide in two fundamental
directions. The first direction is represented in works in which solu-
tions of the problem are achieved with the help of numerical or graphical
processes permitting the step-by-step calculation of a system of parti-
cular values of the desired functions. (Works of Busemann, Kibelia, ,
and Frankl.) The fundamental achievements of the methods represented by
these works consist of the fact that by their use many actual practical
problems ray be solved quantitatively of which the solution by other
methods would present great difficulties. In particular these methods
solve thoroughly corner-nonpotential problems. The chief defect of
these methods is that the solutions obtained are numerical so that it
is impossible to obtain a general qualitative estimate of the phenomena
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under investigation. The second direction is represented by the works

of Meyer, Ackeret, Prandtl, and Busemann, which are confined to a culti-
vation of an exact theory of irrotational flows. The results are based
on the fact that in the case where vorticity is absent the character-
istic system of differential equations (2) admit of integrable combina-
tions. This theory leads to series of approximate results of any desired
accuracy, giving a complete qualitative and quantitative picture of the
flow. Since our investigation 1s mostly connected with the theory of
irrotational flows we give below a brief introduction to the fundamental
methods and results of this theory.

We introduce the stream function ¥ defined by the following relations

oy
Y
S X (8)

As is well known from equations (2), (7), and (8) the following relations
follow without difficulty

p
—=8 (9)
pk
ve a2
—_— = 10
2 ¥ k-1 *o (10) .

Where 0, tO denote quantities which display the flow once and for all

as a function only of y. With the help of equations (2), (9), and (10)
it 1s easy to obtain the two equations
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ov ) d )
(a2 - v2)—2 4+ (&2 - Vye)-l,-x - VgV Wy, Tx) Lo (12)
Ix dy dx dy
where Q denotes a quantity defined as
dt 2

p -
ay k(k - 1) dy
Equations (11) and (12) represent linear relationships between the first

partial derivatives of the functions vy, Vy with respect to x and y.

Since every flow under consideration is supersonic, the entire region
of the flow may be covered by a pair of families of characteristics. The

differential equations of these characteristics are obtained easily by
the use of equations (11) and (12). For one family of characteristics,
which we shall agree to call the first family, we obtain the equations

dy = mpdx (14)

(a2 - v2c0325)m1 + vesin B cos B o (15)

d(v cos B) + mod(v s8in B) = @
v2cos2p - a2

and for the other, which we shall agree to call the second family, we
have the equations

dy = mpdx (16)

(a2 - v2cos28)m, + v2sin B cos B

a(v cos B) + md(v sin B) = Q ax (17)

v2cos2p - a2

Here m, mp denote the following expressions

-v2sin B cos B + a\/va - a2 (18)

a - v2cosaa

m =

cwWmeex e e e



LY

0 NACA T 1394

-v2sin B cos B - a\/v2 - a2

my = ; (19)
a - VacOSEB

We now consider a supersonic stream with constant hydrodynamical
clements (i.e., functions v, B, p» P, @a). We shall call this flow the
undisturbed flow. The values of the functions v, p, p, a in the undis-
turbed stream will be denoted by w, Po» Pp» 8o respectively, and

the ratio w/ao by M. Since the stream under consideration is super-

sonic, M > l. We shall choose the direction of the velocity of the
undisturbed stream to correspond to the direction of the x-axis.

We assume that the undisturbed strcam strikes an immovable, fixed,
frictionless wall (contour K), inclined in such a manner that in flowing
around this wall the stream never detaches from it and remains super-
sonic everywhere. We may distinguish two cases of flows of this type.

Case I.- The contour K is situated in such a manner that the
condition

Bx(0) ¢ © (20)

is fulfilled. In this case, as 1s well known, there appears a curve of
weak discontinuity OC (figs. 2(a), and 2(b)) proceeding from the origin
and dividing the entire flow in two parts. On one side of the curve of
weak discontinuity OC extends the region contalning the undisturbed
streart and on the other the region of flow around the wall. In the region
of flow around the fixed frictionless wall the hydrodynamical elements of
the stream, generally speaking, are not constant but vary. 1In what fol-
Jows we shall call this part of the stream the disturbed stream. In the
entire region of the flow under consideration the functions v, B, p, P, &
are continuous but their partial derivatives with respect to x and y
(a1l or only some) exhibit Jjump discontinuities, at least on the curve of
weak discontinuity OC. The same curve OC appears as a characteristic of
the second family since the hydrodynamical elements of the stream are con-
stant. On this line the following relationships will hold in the entire
region containing the stream

2
v, % (21)
2 I -1

to =

A O

e
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0 = 8p (22)

where 6p denotes a quantity defined as

je)
60 = —— (23)

pok
From equations (13), (21), and (22) we easily obtain

i

il
o

(24)

i.e., the flow under consideration is irrotational. By virtue of rela-
tion (24) the right-hand side of equations (15) and (17) vanish and these
equations can be integrated. As a result of integration of equation (15)
we obtain the relationship

B + @(v) = constant ‘ (25)

satisfied along any characteristic of the first family, and as a result
of integrating equation (17) we have

B - ¢(v) = constant (26)

satisfied along a characteristic of the second family. ¢(v) denotes a
function defined as

e(v) = : + i arc tan : ; i V2 - a2 - arc tan 3[5?;215? (27)
p - V a

Since on the curve of weak discontinuity OC +the quantities v and B have
the values w and O, respectively, the following relation is satisfied
along every characteristic of the first family intersecting this line
and consequently in the entire region of the disturbed stream:

>

i e w4 ee o

——
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B+ 9(v) = o(w) (28)

From equations 16, 26, and 28 it immediately follows that the char-
acteristics of the second family (the curve OC being among these) are
straight lines since along each of these characteristics the hydrodynam-
ical elements are constant.

Making use of these circumstances it is not difficult with the aid
of equations 28, 26, 22, 21, 16, 10, 7, and 5 to construct expressions
for the functions v, B, p, p, a in the region of the disturbed flow.
However, the construction of these expressions is not of great interest
since our chief interest is centered on the construction of an expres-
sion for the pressure on the contour K which may be accomplished without

the use of these expressions for the hydrodynamical elements of the flow.

Actually equation 28 allows us to determine the velocity v as a function
of the angle of inclination of this velocity with the x-axis at every
point of the region filled by the disturbed flow. Since by virtue of
equation 5 the angle of inclination of the velocity with respect to the

x-axis is a given function of x on the contour K there is the possibility

of using equations 22, 21, 10, 9, and 7 to determine the pressure p &s a
function of x on the flow around a contour. If we limit ourselves to
the consideration of slightly disturbed flows, i.e., flows whose hydro-
dynamical elements differ but little from the hydrodynamical elements of
the undisturbed flow, the expression for the pressure on the flow around
a contour K may be written in the form of a series. This series has the
form

P=po+ QElBk(x) + apBy(x) + agp 3(x) + aypt(x) + . . ] (29)

Eo

——
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where
q = QOVE _ p()kM2
2 2

a) = 2(M2 - 1)-1/2

ag = (M2 - 1)'2<2 - M2 4 5—*2—'-}44‘*)

- -7/2 b _ 2 4+ S(k Lo, D -Tk+ 2k2 k+1.,8
az = (M2 - 1) [} 84+5(+1)M+ z Mo + ==

aly = (Ma’l)-s(%°%‘42+3—'-"-6-}-25m“+‘21-“i’;+1&2M6+

15+20k-&(2+5k3M8+-21-20k+5k2+2k3M10+2+2k—k2M12>
12 48 48 '

ooooooooooooooooooooooooooooooooooooooo

Case II.- The flow around a contour K is situsted in such a manner
that the following inequality is satisfied

Bk(0) > 0 (30)

In this case, as is well known, a line of shock discontinuity OD appears
(fig. 3) rroceeding from the origin O and dividing the entire flow under
consideration in two parts. On one side of this line is the region of
the undisturbed stream and on the other the region in which the fluid
flows around the fixed frictionless wall. Just as in case I we call the
flow in the region in which the stream around the fixed frictionless wall
is accomplished the disturbed flow. In the present case, in contrast to
case I, the functions v, B, p, P, 8 exhibit jump discontinuities on the
shock-line OD.

* —
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In the reglon of the disturbed flow these functions must satisfy
not only equatlons 2, 5, und 7 but also the dynamical conditions across
the shock line. Considering the flow to be only slightly disturbed, these
conditions may be written in the following form

2
2 a2
N O . (31)
2 k-1 2 k-1
= w(1 + b1p + bop2 + bapd + byph + . . L) (32)

where

T 2 2
by = -(M? 1)'§%+-;-M2+f(k-l)l«“+5k '2i2k+5M6+£——)—k;21 MB]

2 - )L 2R, T k20K L - 27k + 1262 6
(M= - 1) (2h+8M+ ” + ™ +

5+5k-k2+k5M8+-5-k-.3k2+5k5M10)
16 L8

. . ¢ e « ¢ o e o . . . O e & . . L] . . 4 e e . . . . . . . . . . . .

eﬁ.=1+l555+lu5h+... (33)

0

PP
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where
k(k2-1)M6 o -2
z3=—-_l.é_—- (M= - 1) 2
2 .1 -
zh=5£-1ii-2-ﬂn5(m2-1) 3E++2(k-2)M2-(k-l)Mh]
%
&y . ep + €8 + ezaa + . .. (34)
dax
where :
-1
eg= (M -1) 2
el-k:ln‘*(ma-l)e

Condition 31 shows that, disregarding the presence of Jjump discon-
tinuities in the functions v, B, p, p, &, equation 21, Jjust as in case I,
is valid throughout the entire region filled by the flow under considera-
tion. However, condition 22 is not, generally speaking, fulfilled in
the case now under consideration. However, there is the possibility of
speaking of satisfying this condition approximately. In fact, consider ;
equation 33. Its right-hand side does not contain terms in the first ;
and second powers of B. Therefore, for slightly disturbed flows, equa- ‘
tion 22 may be regarded as approximately satisfied on the line OD and con-
sequently throughout the entire region filled by the flow under considera-
tion. From this it follows that in the region of disturbed flow equa-
tion 24 may be regarded as approximately satisfied, which means that

[P
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where
k(K2 - 1) |62 -2
13=T (M= - 1) 2
zh=%—l-l—)u6(m2-1)‘5[u+2(k-2)M2-(k-l)M“]
%%»: eg + €1 + eaa2 + ... (34)
where
1
e0=(M2-l) 2

Condition 31 shows that, disregarding the presence of Jjump discon-
tinuities in the functions v, B, p, P, &, equation 21, just as in case I,
is valid throughout the entire region filled by the flow under considera-
tion. However, condition 22 is not, generally speaking, fulfilled in
the case now under consideration. However, there is the possibility of
speaking of satisfying this condition approximately. In fact, consider
equation 33. 1Its right-hand side does not contain terms in the first
and second powers of B. Therefore, for slightly disturbed flows, equa-
tion 22 may be regarded as approximately satisfied on the line OD and con-
sequently throughout the entire region filled by the flow under considera-
tion. From this it follows that in the region of disturbed flow equa-
tion 24 may be regarded as approximately satisfied, which means that
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equations 25 and 26 hold on characteristics. For values of B and v
near O and w, respectively, equation 28 may be written in the form
of a serles

v=w(l+by's +by'pe + b3'a5 + bu'a'* +.0..) (35)
where

-1
by’ = -(M2 - 1) 2=0
v v Yl k-1 _
bp' = -(M - 1) (2+—r-}4'*)-b2

N P 2k? _ 5K
by' = <M - 1) 3|24 2 M2 4 2k - Mk 4 K ¥ I 6

6 2 4 12

]

- - -1 2
by' = -2 - 1) 4 22 4 2L E 2k 3 19k + 16k° 6 .
2, 8 24 24

3 - 2k - 5k2+hk3M8+-3+8k-—7k2+2k3Mm)
32 96 )

Comparing equations 32 and 35 we see that for slightly disturbed
streams the first may be substituted for the second with good approxi-
mation. Consequently, for slightly disturbed flows, equation 28 will be
approximately satisfied along the line OD. Since, on the other hand,
along each characteristic of the first family equation 25 is approximately
satisfied, equation 28 will be approximately satisfied throughout the
entire region of disturbed flow. The approximate expressions for the
functions v, B, p, p, a are constituted exactly like the accurate expres-
sions for these functions in case I. Substituting the approximate expres-
sion for the function B in the right-hand side of equation 34, we obtain



e ST ZTARTCTEG T AR ST AT

NACA T™ 1394 13

a differential equation of the first degree for the approximate deter-
mination of the form of the shock line. Summing up our considerations

we can deduce that the accurate results contained in case I can serve as
approximate results for case II, and further that expression 29 can serve
as an approximate expression for the pressure on the flow around a contour
in case II. These same considerations show that there is no sense in cal-
culating all terms in this expression. It is sufficient to limit ourselves:
to the first two or three terms.

From all that has been said about cases I and II one may conclude
that the form of the contour K may be made up in such a manner that art-
fully constructed shocks may be caused to appear in the region of flow
around the fixed frictionless wall. In such cases when we pay attention
to this phenomenon, the results we have obtained are valid, not for the
entire region of flow around the fixed frictionless wall, but only for
that part in the neighborhood of the front side of the flow around a
contour. The fundamental problem of the present work is the construction
of approximate expressions for the pressure on the flow around a contour
in case II, with the calculation of the circulation of the flow occasioned
by the presence of the shock discontinuity OD. In spite of the fact that
in the case of the presence of circulation it is impossible to integrate
equations 15 and 17, there is the possibility, however, of making up such
combinations of differentials from equations 1%, 15, 16, and 17, adding
to these equations expressions for differentials of the stream function,
that with the aid of these combinations it is possible to construct expres-
sions which we shall integrate. Investigations concerning the preceding
construction constitute the contents of the following section.

PART II

Suppose we have a flow corresponding to case II of the preceeding
section. Assume that in this flow the hydrodynamical elements in the
region of the disturbed stream differ infinitely little from the hydro-
dynamical elements in the region of the undisturbed flow. We revamp
somewhat our notion of the region of disturbed flow. Shortly before we
agreed to apply thie name to the region bounded by the curvelinear
triangle made up of the curve OC» (contour K), the shock line 0OC;, and

the characteristic of the first family C;C» emerging from the lowest

point of the contour K (fig. 4). Taking into consideration equations 5,
14, 18, and 34, it is not difficult to conclude that with the assumptions
made Just now relative to the hydrodynamical elements the curvelinear
triangle OC1Co differs infinitely little from the isoceles straight-line

triangle 0'C;'Co' (fig. 5) where the equal sides 0'Cy' and C;'Cp' are
parallel to characteristics of the second and first families in the



14 NACA TN 1394

undisturbed flow. As for the functions B, (x), B, v, p, p, & we assume

that they all have the properties of differentiability and continuity to
as many degrees as may be necessary to insure legitimacy of operations
vhich are performed upon them. Moreover, we assume that in the flow
under consideration the infinitesimal quantities By(x), By '(x), By"(x),

By, V-Ww,p - Po» P - Py» & - 84 have the same order of magnitude.

Taking this last group of infinitesimals as fundamental (having unit
order of magnitude) we shall agree in what follows to adhere to the fol-
lowing system of notations appearing in investigations involving infinitely
small quantities. By em (m being any positive integer) let us denote

an infinitesimal whose order of magnitude is not less than m. Clearly

such a mode of notation does not exclude the possibility of several dif- -
ferent infinitesimals being denoted by the same symbol, and, vice versa.

The same infinitesimal may be denoted by several different symbols. Thus,

for example, if en infinitesimal o 1is denoted by ¢), the infinites-

imal 20 may also be denoted by ¢}, and, moreover, the infinitesi-
mals a and 20 may be denoted by €3, €5, €.

On an arbitrary characteristic of the second or first family the
equation

dy = pv(sin pdx - cos pdy) (36)

will be satisfied by virtue of equation 8 throughout the entire region

filled by the flow. Eliminating dx and dy from equations 1k, 15,

and 30 and taking into account formulas 13 and 21, we arrive at the .
equation

d(v cos B) + mpd(v sin p) = ¥;d 1n © (37)

which 1is satisfied on any characteristic of the first family. Here 01
denotes the quantity

al E/asin B cos B - (v2cosp - aa)ml]

k(k - 1)v(vecos?s - a2)(m,; coe g - sin B)

CApE P Y

misvhn
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On the other hand, having the integral 25 of the equation
a(v cos B) + mpd(v sin B) = O (39)

it is easy to find an integrating factor L of this equation, such that
after multiplying by L; it may be written in the form

d[:B +o(v)] =0 (40)
In order to determine 1, we have the obvious relationship
Ll[d(v cos B) + mod(v sip B):[ = d[ﬁ + q:(v):J (41)

from which we obtain without difficulty

Ly(mo cos B - sin B)vdp = 4B (42)

consequently

1 = e (43)

v(mp cos B - sin B)

If now we multiply both sides of equation 37 by Lj, this equation takes
the form

d[ﬂ + q:(v)] = Hjd 1n 6 (44)
where H; denotes the quantity

(v2cos28 - a2)my - v2sin B cos B
k(k - 1)ve

Hy = (45)
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We denote by Hjp the value of Hy at v=w, B =0. We have

L e . /2 (46)

H B em———
107 p(x - 1)M2

Equation 44 may be rearranged in the following fashion

d[B + cp(v)] = Hjpd 1n 24 (H) - H1p)d 1n 3 (47)
% %

Now choose an arbitrary point S in the region of disturbed flow and lead

a characteristic of the first family through it. We denote the point of

intersection of this characteristic with the shock line by A (fig. 6).

Integrating both sides of equation 47 along the above characteristic from
point A to point S we obtain

2] e ]
Bs + 9(vs) - By - 9(va) = Hyp{1n -e-g - 1n e—a- + f (H] - Hip)d 1n =
(0] (o] AS 0

(48)

vwhere By, Vg, 0g denote, respectively, the values of g, v, 0 at
the point § and Bg, Vg, 64 denote the values of these quantities at

the point A. Taking account of equation (32) we have
v = w(l + 1 2 5 b
a = 1Ba + boBa“ + b3Bg” + bYBgT + . . )
(49)

We introduce the quantity vy defined with the help of the expansion 35
in the following fashion

vg1 = w(1 + bifg + bgﬂaa + b3?aa3 + bu‘aa“ + .. 0.) (cf eq. (35) -Tr.)
(50)

ot ek

= et s v Gl S T % s e e
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By this definition of the quantity vg; we have

Ba + ®(Va1) = @(v) (51)

With the help of formulas 49, 50, and 51 we rearrange the expression
Ba + @(va) in the following manner

Ba + ®(va) = Ba + @(va1) + @(va) - @(va1)
= @(w) + 9(va) - @(val)
= p(w) + ro'(v)[(va -w) - (v - w)] +

%W"(w) [(Va, - V)a - (Val - w)a] + ..

=g(w) + w'(w) [(b; - b3')pa3 + (by - bh')pal‘] +

“'%"(V)bl(b} - b}')ﬁah + €5 (52)

Calculating ¢'(w), o"(w) we obtain

¢'(w) = -;%I (53)

2 (54)

9" (w) =
wlby

‘s
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Using formulas 52, 53, and 54 we easily find

2b
Ba + ®(va) = ®(¥) - (b3 - b5")Ba> + |—2(b3 - b5") - (bl - b,")| Be* + €5
bl blZ bl
(55)

Now pass a stream line through the point S and denote by P the point of
intersection of this line with the shock line. Since the stream function C
is constant along this line we have

0g = Bp (56)

where ep denotes the value of © at the point p. Taking logarithms of
both sides of equation (33) we obtain

]
n o 1583 + 1,'8% + 1580 4 . . (57)
Since the values of the coefficients 1y', 15', . « « will not be needed

in what follows, we shall not calculate them.

Using formulas (56) and (57) we easily see that

0 e
o gi i 1n.65 - li(Bp3 - Ba’) + lh'(ﬁph - Ba*) + €5 (58)
0 0

where Bp denotes the value of B at the point p. Assuming that the

mean value theorem is applicable to the integral arising from the right-
hand side of equation (48), we easily findl

1Instead, take a slightly more general assumption admitting the part
AS of the characteristic under consideration to be divided in the same
finite number of parts in such manner that on each part the mean value
theorem can be applied to the integral under investigation.

5 s H e 5 R R
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r

J

(H) - Ho)d In = = 13(H; - Hi0) (8p” - Ba3) + €5 (59)
AS %0

(In consequence of this equation one must keep in mind that ﬁi - Hio = el).
Here H; denotes the value of H; at some point on the characteristic
under consideration between the points A and S.

Using relations (55), (58), and (59) we write equation (48) in the
following form

2b
Be + 9(vg) = 9(w) - (b3 - b3')p,3 + | =2(b5 - by') - L(by - by')|Ba’t +
by by2 b

H1ol3(Bp° - Bad) + Hygly'(Bp - Bat) +

13(H, - Hlo)(Bp3 - Bg?) + €5 (60)

We denote by B the intersection of the characteristic of the first
family under consideration with the contour K. Applying formula (60) to
the point B (which is possible, since the point S was chosen arbitrarily)

we obtain

2b
_ 1 _ ' 3 ___2_ - bha') o _}_ _ 1y 4
By + @(vp) = o(w) - 5-1-(b3 b3z')Ba” + bl2(b3 bs') bJL(m+ by')| a” +

Hiol3(Bp” - Bad) + Higly'(Bo" - Ba*) +

7'5(1“{‘1 - Hlo)(Bo3 - 335) + €5 (61)
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where Pp> Vb denote, respectively, the values of B and v at the
point B and Bp denotes the value of B at the point 0.

We now proceed to the derivation of an expression for Bg. From
formula (60) we have
Bg + Q’(Vs) = o(w) + €3 (62)
From equation (62), using formula (35) we obtain

vg = w(l + b1Bs + baﬁsa) + €3 (63)

and denoting by m,, the value of m, at the point S we obtain, by
using formulas (19) and (63)

mag = 2 - DTHE L KX L2 - 1)2 g, 4 o
= eg + 2e1Bg + €2 (64)

Analagous to the derivation of equation (47), which holds on character-
istics of the first family, we may derive equation

d[p - cp(v)] = Hyd 1n % + (Ho - Hxp)d 1n -696 (65)

which is valid on characteristics of the second family. Here Hp denotes
the function defined as

(v2cos2p - a2)my - vesin B cos B

k(k - 1)ve

and Hyy denotes the value of this function at B =0, v =w.

:

B
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Now pass a characteristic of the second family through the point S
and denote by Q 1its intersection with the contour K. Integrating both
sides of equation (65) along this characteristic from the point Q to the
point § we obtain

, ; eq\ 8
Bs - Bq -|®(ve) -@(vq)] = Hop(1n g2 - ln o2 + qu (He - Hao)d 1n g5
(67)

where qu AL eq denote respective the values of B, v, 8 at the

point Q. Since the contour K 1s a stream line we have

8q = 5(0) (68)

where e(o) denotes the value of 6 at the point 0. Assuming that the
mean value theorem can be applied to the integral arising from the right-
hand side of equation (67) we easily find, with the aid of formulas (56),
(57), and (68)

Bs - Bq = |9(¥s) - 9(vg)| = €3 (69)
Applying formula (62) at the point Q we have
By + @(vg) = @(v) + €3 (70)

Eliminating @(w) from equations (62) and (70) we arrive at the fol-
lowing equation

Bs - Bq + |®(vg) - 9(vg)| = €3 (71)
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Families (69) and (71) give
Bs = Bq *+ €3 (72)

On the shock line we take an arbitrary point F (fig. 7) and pass
through it a characteristic of the second family in the region of the
disturbed flow and we denote by B¢, mpp, respectively, the values B

and mo at the point F. Applying formula (64) at the point F we obtain

mop = €9 + 281Bf + €o (73)

\
We denote by <§%/‘ the slope of the tangent to the shock line at the
f

" point F. From equations (34) we have

10

= ep + ele + €o (714»)
f

Comparing formulas (73) and (T4) we see that the characteristic of the
second family passing through F and the shock line at this intersection
make an infinitesimal angle with each other moreover, if

Be > O (15)

the slope of the characterictic of the second family is greater than the
slope of the shock line at the point F. 2

°1¢ 1s casy to show that if the shock line is unbroken and moreover
condltion (30) is satisfied the inequality B < 0 1is impossible on this
line. As a matter cf fact, in the opposite case the shock line is broken
since with B < O condition (34) must be replaced by the following con-
dition in virtue of Tsemplen's theorem

= (op - e1p + el b )

gle
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Denoting by L the intersection of the characteristic of the second
family under consideration with the contour K and by Xy ubscisca of this

point, we have

Xy = € (76)

let B3 denote the value of § at the point L. Using equations (5)
and (76) and Maclauren's formula we obtain

Py = B(0) + By '(0)xy + €3 (77)
Applying forrmula (72) at the point F we obtain
Br = By + €3 (78)
As a consequence of equations (77) and (78)
Br = By(0) + B '(0)xq + €3 (79)

Since the point F was chosen arbitrarily on the shock line by use of
equations (T4), (76), and (79) we can obtain the following differential
equation for the shock line

= ey + elﬁk(O) + €o (&))

&

Conescquently the equation of the shock line may be written in the fol-
lewing form

y = {eo + elﬁk(oi]x + €p (81)
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Applying formulas (O4) and (72) to un arbitrary point situated on the
characteristic of the second family FL we easily obtain the differential
equation of this line from the following form

dy
—_— = eqg + 248, + € (82)
ax 0 1Pl 2
Employing formulas (76) and (77) this equation may be written
% = eg + Qelﬁk(O) + €2 (83)

Consequently the equation of the characteristic FL may be written in the
form

Yy="n + [80 + 2elﬂk(0)] (x - xl) + 62 (8’4)
where y,; denotes the ordinate of the point L.

On the other hand, teking account of formulas (3) and (76) we have

X
= [ ten glxax = e (85)
0

Employing formulas (85) and (76) we may write equation (84) in the form

y = [eo + 2elak(0):]x - epXy + €2 (%)

Applying forrmlas (81) and (86) at the point F and denoting by xf, ¥¢
the coordinates of this point we obtain

-

S e Lri W
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r |
ye = 'eo + elBk(O)JXf + €2
L (67)
yf = E_eo + Eelﬁk(O)-}xf - eoxl + €2
L J
From equation (87) we easily obtain
€1
) X1 = ;—- Xka(O) + € (88)

0

Replacing x; in the right-hand side of equation (79) by the expression
in formula (88) we obtain

By = Bk(0) + =k xBy (018" (0) + €5 (89)
€0

We denote by x5, Yyg the coordinates of the point A and by xp, ¥p

the coordinates of the point B. Applying formula (89) at the point A
we arrive at the following result

‘ Ba = Bk(0) + = xaB(0)B' (0) + €3 (90)
(0]

We now express X in terms of x,. To this end, using formulas (1k4)

and (18), we write the differential equation for characteristics of the
second family in the following fashion

&l

= -ep + € (91)

———
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Employing formula (91) we write the equation for the characteristic AB
of the first family in the form

Y= ¥p - eo{x - xp) + €3 (92)

Taking account of formula (3) we have

Xp
Yp = Jr tan By (x)dx = €3 (93)
0
consequently equation (92) may be written
¥y = -eglx - xp) + € (9%)

On the other hand, equation (81) for the shock line may be written in
the form

y=e x+¢€ (95)

and applying formulas (94) and (95) at the point A we obtain

\

Ya = -€g(xq - xp) + €] |

> (96)
/
From equation (96) we easily find
x
Xgq = 2 € (97)

2

s At
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And consequently

e
Pa = Bk(0) + === xpBi(0)By' (0) + 5 (58)
O‘

Substituting this expression for B, in the right-hand side of equa-

tion (61) and substituting By for Bx(0) in the fundamental formula (5)
we obtain

By + 9(Vp) = o(w) - Ll(bj - b3")p,3(0) -
1

2b
[B-l-(bu - By - —(bs - b5')J Bt (0) -

1 by
N
Je. bz - by’
l[-j 2 + Hlol%]beKB(O)Bk'(O) + €q (99)
260 b 1

Employing relation (35), we easily obtain from equation (399)
Vp = W {1 + b1Bp + boBp2 + b3"Byd + by'at + (b3 - bs')BI(0) +

2b 2b
[bu - byt - ;-g(bj - b;')] By "(0) + b—?-(b;s - b3')8,2(0)By, +
1 1

ey

3° 05 2(0)py' ] 100
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Substituting wvp, By, xp for v, Bk(x) and x, respectively, in

formula (100) we arrive at the following final expression for the velocity
on the contour K:

v=w {1 + DB (x) + bgﬁkE(X) + b}'BkB(x) + by Byt (x) + (b - b3')Bk5(0) +
[ . 2bp 4 2b 3
l.bu - by' - —g-l-(b3 - b3')|Bk (0) + -'b—J:(bj - b3')Bx?(0)Bk(x) +

}el 1 1/
E-e—(;[-bj - by’ + HlO."}bJJ xpkj(O)ﬂk o0)4 + €5 (101)

We now proceed to the derivation of formulas from which the pressure
on the contour K can be calculated. Clearly

ape = k — (102)
and noreover, on the contour K the followlng equation holds

p _ 4(0)
5= ) (103)

Enploying formulas (7), (10), (21), (23), (102), and (103) we easily obtain
the following expression for the pressure on the contour K

1
k-1 k-1

0 |
p=po9.%. 1-5-:2—-%1\42(1;-2- ) (204)

R

wenkr e
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On the other hand, by virtue of equations (5) and (33) the following
equation holds

o, 138, 0(0) + g H(0) + . . . (105)

o)

e(0)

Substituting the expressions for v and obtained in formulas (101)

and (105), respectively, in the right-hand side of equation (104) we obtain
after elementary transformations the desired formula for the calculation
of the pressure on the contour K

P = po + q|a3fk(x) + agﬁka(x) + aBBkj(x) + ahﬁkF(x) + aldpkB(O) +

32dﬂkh(0) + a5d6k5(0)3k(x) + audﬁkj(o)ﬂk'(o)x] + €5 (106)
where

215

IR A RS

k+ 1 I/ 1 3.k k-5
== MM - 1) 2(-3+TM2+—§E—M‘*)

4bp 2y

2(b3 - b3') -

asy = -2(by - by') +
by k(k - 1)M2

. a2 L 2 .3
=M‘*(M2-1)’5(.k"‘1+5"’5t %° 2 4 210 3k;6k B,

9-7k2+2k5M6+-3+k+5k2-k5M8>
16 32

At s ki e e s
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4b 213b

2 5P1
azy = (bz - bz') My - 2by - +
3q = (b3 - b3 T A

2
=W(M2-l)'5-kzl+7+21;+-5k M2 +

-h+3k+6k2-k3Mu+3-7k-7k2+3k5M6
2 9% |

-?E(b - bz' + Higlzby)
303 3 104301

_ ke 2 g0 5[ 3ok, B-5
= MB(M2 - 1)77(-1 4 222 - - M‘*

For x = 0 the formula (106) takes the form

P =D+ q[élﬂk(O) + azakz(o) + a319k3(0) + au'ak“(oi] + es  (107)

where az' = az + 815, 84' = &) + 8y + 854,

Formula (107) may be used for the calculation of the pressure on a
flat plate which is inclined at an angle ak(o) to the undisturbed flow.

In order to single out of the right-hand side of equation (106) those
terms which depend exclusively on the presence of the shock in front of
the contour K, we add to the contour K under consideration an arc 00
of finite length in such a manner that this arc is tangent to K at the
point O and is parallel to the x-axis at O' (fig. 8). Since the flow
around such an additional contour 1s accomplished without the appearance
of shocks (we suppose that the angle between the direction of flow and the
x-axis and the derivative of this angle with respect to x are both
infinitely small), formula (29) may be employed in the calculation of the
pressure on this contour. Comparing formulas (29) and (106) and denoting
by O&pgtoss ‘the pressure resulting from the presence of the shock front,

we obtain

PPN —-—_

o e 3 P e i A i o4 o v
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- qe 3 L 3
Mstoss Q[%ldﬁk (0) + apgBy "(0) + azgpy”?(0)B(x) +
audﬂka(O)Bk'(O)%] + €5 (108)

We may, in turn single out of the expression for Apgiogs the term

depending solely on the vorticity caused by the presence of the shock.
In order to do this we add to the contour K(OCQ) a straight-line segment

tangent at the point O (segment 0'0C in fig. 9). With the contour 0'002
a shock is formed, but the shock line O'Cl is straight so that vortex
formation is absent. Calculating the pressure on the portion OC2 of the

eontour 0'0C2, we obtain

P=pg+ q[alﬁk(x) + a8 2(x) + asy A(x) + auBk'*(x) +
a1fi(0) + 8agB "(0) + azp, P01, ()] + €5 (109)

Comparing formulas (106) and (109) and denoting by &p,. . the pressure

due to vortex formation caused by the shock, we obtain
LProy = Qﬁﬁdﬁké(o)ﬂk'(o)x + €5 (110)

PART III

We now apply the results obtained to the calculation of the lifting
force and head resistance of a flat wing with sharp front and rear edges
placed in a supersonic stream having constant hydrodynamical elements.

We place the origin O at the front edge of the wing and arrange the
coordinate system so that the positive x-axis corresponds to the direction
of the velocity of the undisturbed flow and measure angles in the manner

used heretotore. Segment OC2 connecting the front and rear edges (fig. 10)
will be called the chord of the wing as in the theory of witgs. The length
of this curve will be denoted by T and the angle it mekes with the x-axls

by B.
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The form of the wings we are investigating is def'ined by a pair of
contours like that investigated in the preceding section, possessing a
pair of common points O, Cp. Comparing ordinates of points on these

contours having the same abscissa, we call the upper contour K, that

contour of which every point on the ordinate is greater than the corre-
sponding point on the ordinate of the other contour, which we call the
lower contour Kj;. The function Bk(x) for the upper contour we denote

by Byu(x) and for the lower by Byi(x).

We choose an arbitrary point A on the chord of the wing and denote
the distance OA by t. Through A we pass a straight line perpendicular
to the chord of the wing and denote by A, and Aj;, respectively, the

intersections of this straight line with the upper and lower contours.
With the point A, we associate a unit tangent vector t,; and at the point Ay

a unit tangent vector tj;. The vectors t,; and t; will be directed in such

a manner that their projections on the direction OC, are positive. We
denote by By and B;, respectively, the angles these vectors make with

the vector 555. Clearly 8,, PB; may be regarded as functions of t.
We denote by B, and B0 the values of By and B3 at the point O
and the values of the derivatives of §,, and f; with respect to t
at the point O by Byo' and By4'.

The abscissa x of Ay may be calculated from the formula

ot

x=tcosf - sin By/\ tan B4t (111)

0 .

and that of the point A; from the formula
_ .t

x =1t cos B - sin Bu/\ tan pdt (112)
0

The value of the functions By, (x) at the point A, is determined by the
relation

Bru(x) = B + By (113)

-
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and the value of the function By 3(x) at the point A; by the relation
Bxi(x) = B + By (11k4)

Moreover we have the relations

T
- u/1 tan B,dt

0

T
f tan Bqdt
0

We assume that 6 and also B, and f; and other derivatives with

respect to t are infinitesimal quantities. From equations (115) and
(116) we easily obtain

]
(@]

(115)

[}
(o

(116)

T : T s
f Budt = - 3 f By dt + €5 (117) :
0 0

. T 1 T 3
f Bldt’ = - - f BZ dt + ¢ (118)
0 > Vo 2

Proceeding now to the calculation of the 1lifting force and head resistance
of the wing under consideration, we remark that on the top side of the
wing a shock appears when and only when

B+ By > O (119)

and at the bottom side when and only when

B+B0<O (120)
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We introduce the quantitles ayy, apy, az,, ay,, defined as follows

81y = 813
apy = apq )
if B+ By >0 (121)
8.5u = a}d ‘
8ly = g
81y = 8py = 83, = 8, = 0 if B+Byy<O (122)

In an analogous way we define the quantities ay;, a5, 851y 8);

811 = 814
821 = 829 .
if  B+Byp<0 p (123)
831 = 35d
8y = 84q J
B.lz = 321 = 8.51 = &ul = 0 if 5 + Blo 2 0 (12)"')

Denoting by p, the pressure on the upper contour K, and by p;
the pressure on the lower contour K; we easily obtain, with the help of
formulas (106), (121), (122), (123), (124)

p, = Po + qEanu(X) + 8By 2(x) + azpy S(x) + ayp, k(x) +

81,81 (0) + 8z *(0) + 83Byu” (0)Byy (%) + auuﬂxu5(°)ﬁku'(°)"] + €5

(125)

e cetagtn Sl R S 8 S S SRR o I
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Py = Po + QEﬂlﬁkz(X) + apBi2(x) - azpq3(x) + auem“(x) -

8118k17(0) + agBy;H(0) + 858, ,7(0)B,, (x) + aulﬁkl5(0)ﬂkz'(0)%]

+€5

(126)

-y
let P denote the resultant vector of the hydrodynamical force

acting on a unit length of the wing under consideration. We have then

~> -
P = Eﬁpnds

where ? denotes a unit vector normal to the contour of the wing and
directed inwards.

(127)

We introduce the dimensionless coefficient of the lifting force Cy
and the dimensionless coefficient of head resistance C,. These coeffi-

cients are defined by the formulas

P.
qT
P
Cx = —
qT

Y
where Py and P, denote the projections of the vector P on the

(128)

x- and y-axes, respectively. From formulas (127), (128), (129) we have

1 1
L fonae k[
Cy = = = Ppdx + — pydx
Y qQT Yo qT Jo

(130)

T —
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1
1
Cy = + — P, tan B (xdx--—-f tan x)dx 131
X T o u ku ) T Jo Py Bkl() (131)

where 1 denotes the abscissa of the point Cp. With the aid of formu-

las (111), (112), (113), (%), (117), (118), (125), (126), (130),
and (131) after a few elementary transformations we obtain

Cy = Cy1 + Cy2 + Cy3 + Cyy + €5 (132)
where

Cy1 = -2ap
or -2 [ (12w

Cy3 = (a1 - 2a3)B° - ay,(F + Buo)3 - a1y (F + B20)° +

T
(a1 - 3a3)8 f (pa” + 80 ?at + %(—31 - a;) /O (m + B3)a

- 4 e
Cyl = -ap,(B + Buwp) + ap1(f + B\zo)u - a3 B(p + Bup)” +

a318(8 + B10)° - %auu(ﬁ + Buo) B’ + % a1 (B + B1o) B0’ +

, , T : T
-2 2 , - ’
%(52- ap - 6%)3 fo (Bu® - B1%)at + %(2 ap - uau)a fo (B - Brd)at -

a T
" . u)
T A (5u By Jat

e et
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Cx = Cxa + Cx3 + Cx) + €5

where

T
-2 a1

39,25 T ‘ as T
ij = _T_ /0 (Bua - Ble)d.t + E— 0 (ﬂu5 - Blj)dt

Cxl = (233 } %l-)au + 8y B(B + Buo) + 2 B(B + Bo)” +

37

(133)

T T
1 a1\ -2 2 2 1/ a3\ f 3 3
SR A ST AR GRS AN ST

Let us consider a numerical example.
Suppose

k = 1.405, M= 1.5, Po = 1.033 kg/em?

Then
2

KM

q= 39-2—- = 1.633 kg/en?

ay = 2(M2 - 1)'1/2 = 1.789

ap = (M2 - 1)"3(2 - 2 + 1.2034) = 2.296

ay = (M2 - 1)-7/2(1.333 - 2 + L.oodd* - 1.8096 +
0.400a8) = 3.082

ay = (M2 - 1)72(0.6667 - 0.666TM2 + 5.6164% - 3.82m40 4+
2.96aM8 - 0.7840M10 + 0.07992412) = 8.290

(Equations continued on next page).

(134)

> (135)
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ajq = 1.20RM*(M2 - 1)'7/2(-0.3333 + 0.265842 - 0.03271M4) = 0.2766

apg = MH(M2 - 1)77(-1.203 + 1.31TM2 - 0.6431M* + 0.04556M0 +

0.0485M8) = 0.4448

azg = MO(M2 - 1)7(-0.4008 - 0.0025M2 + 0.386M* - 0.1286) = 0.3318

ayg = 0.361M8(M2 - 1)72(-1 + 0.797M2 - 0.09813*) = 0.9035

Let us take as the functions B,,, :3)

Bu=-2§+l-;9-t
By =0

Moreover we assume that

B <0

-
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~

(%)

\ (136)

(137)

The form and position of the profile of the wing, determined by equa-
tions (136) and condition (137), is shown in figure 11. It is easily
seen that the straight line S,S, drawn perpendicular to the wing through

its mid point is the axis of symmetry of the profile under consideration.
From equations (136) and condition (137) we have

E+B‘10‘= -é)O

E+B10=§< 0

(138) -

o ey o
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Consequently,
1
apy = 813 = 819 = 0.2766
apy = 8p7 = apy = 0.L44L48
83u = 3.51 = ajd = 0-3518
ajy = ay] = ayqd = 0.9035 J

Using formulas (132), (133), (135), (136), and (139) we obtain

cy=-2a1§-%a2§2+(§a1-6a5>§3+

10 56
3

< 8- ’5"51&+235d+234d)5u+e5
= -3.5788 - 3.0618° - 14.325° - 82.7% + . . .

102, =3, (81, 66 \<b

= 5.96552 + 9.1814-63 + ho.&ih +. ..

Let

39

(139)

(140)

(141)
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Then
Cy = 0029}6
(142)
Cx = 0.04168
Knowing Cy, Cx, T, and q, we easily obtain
Py = qICy = 47.9 kg/em |
(143) )
Px = qTCx = 6.81 kg/em

SUWMARY

In the present work the problem of a flow of stream of ideal gas
arourd a thin wing at small angles of attack is investigated, this stream
being supposed to be two-dimensional, stationary, supersonic and deprived
of heat-conduction.

In the initial part of the work, the problem is stated, and the well-
known results obtained by Ackeret, Prandtl, and Busemann are cited. These
results, as known, are obtained on the basis of the potential supersonic
streams theory, which is founded on the existence of integrable combina-
tions of characteristics of differential equations concerning this problem,
and in which some peculiarities of the dynamical conditions on the line of
the shock wave are utilized.

In the second part the approximate solution of the problem is given
with an allowance for vortex-formation caused by the change of entropy
along the shock wave, when receding from the leading edge of the wing,
near vwhich this shock wave is formed. For this purpose differential
equations of characteristics non admitting integrable combinations are
to be dealt with. The solution is obtained by means of a special method,
which enables us to £ind the approximate integrable combinations of 4if-
ferential equations of the characteristics. The obtained combinations
let us receive the approximate formula of pressure in any point of the
contour of the wing investigated. From this formula the term is easily N
segregated depending exclusively on the vortex formulation, caused by
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the change of entropy along the shock wave. The characteristic dis-
tinction of this term of the obtained formula of pressure from the other
cnes, is that it includes the curvature of the wing contour at the leading
edge and the distance from this edge up to the element of the wing for
which the pressure i1s calculated.

In the third part of the work the expressions for 1ift and drag
coefficients of the wing are given, on the base of the formula of pres-
sure obtalned above. In conclusion a numerical example is studied.

Translated by R. Shaw
Institute of Mathematical Sciences
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